Search results for "Collagen helix"

showing 2 items of 2 documents

Corrosion of Heritage Objects: Collagen‐Like Triple Helix Found in the Calcium Acetate Hemihydrate Crystal Structure

2020

Abstract Helical motifs are common in nature, for example, the DNA double or the collagen triple helix. In the latter proteins, the helical motif originates from glycine, the smallest amino acid, whose molecular confirmation is closely related to acetic acid. The combination of acetic acid with calcium and water, which are also omnipresent in nature, materializing as calcium acetate hemihydrate, was now revealed to exhibit a collagen‐like triple helix structure. This calcium salt is observed as efflorescence phase on calcareous heritage objects, like historic Mollusca shells, pottery or marble reliefs. In a model experiment pure calcium acetate hemihydrate was crystallized on the surface of…

Collagen helixchemistry.chemical_elementSalt (chemistry)Crystal structureCalcium010402 general chemistry01 natural sciencesCatalysisAcetic acidchemistry.chemical_compoundchemistry.chemical_classificationcalcium010405 organic chemistryChemistryCommunicationstructure elucidationHelical StructuresGeneral Chemistrycarboxyalate ligandsCommunications0104 chemical sciencesAmino acidX-ray diffractionEfflorescenceCrystallographyTriple helixAngewandte Chemie (International Ed. in English)
researchProduct

Influence of proline residues in transmembrane helix packing

2003

Integral membrane proteins often contain proline residues in their alpha-helical transmembrane (TM) fragments, which may strongly influence their folding and association. Pro-scanning mutagenesis of the helical domain of glycophorin A (GpA) showed that replacement of the residues located at the center abrogates helix packing while substitution of the residues forming the ending helical turns allows dimer formation. Synthetic TM peptides revealed that a point mutation of one of the residues of the dimerization motif (L75P) located at the N-terminal helical turn of the GpA TM fragment, adopts a secondary structure and oligomeric state similar to the wild-type sequence in detergents. In additi…

Models MolecularProtein FoldingGlycosylationProlineStereochemistryProtein ConformationCollagen helixRecombinant Fusion ProteinsMolecular Sequence DataEndoplasmic ReticulumProtein Structure SecondaryComputers MolecularProtein structureStructural BiologyAmino Acid SequenceGlycophorinsMolecular BiologyIntegral membrane proteinProtein secondary structureChemistryCell MembraneProteïnes de membranaWaterLipidsTransmembrane proteinPeptide FragmentsCrystallographyTransmembrane domainMembrane proteinHelixMutagenesis Site-DirectedDimerization
researchProduct